C-peptide increases forearm blood flow in patients with type 1 diabetes via a nitric oxide-dependent mechanism.

نویسندگان

  • Bo-Lennart Johansson
  • John Wahren
  • John Pernow
چکیده

Proinsulin C-peptide has been shown to increase muscle blood flow in type 1 diabetic patients. The underlying mechanism is not fully understood. The aim of this study was to evaluate if the vasodilator effect of C-peptide is mediated by nitric oxide (NO). Eleven type 1 diabetic patients were studied two times and randomized to administration of intravenous and intra-arterial infusion of C-peptide or saline. Forearm blood flow (FBF) was measured by venous occlusion plethysmography during infusion of C-peptide or saline before, during, and after NO synthase (NOS) blockade. Endothelium-dependent and -independent vasodilatation was evaluated by administration of acetylcholine and sodium nitroprusside, respectively. FBF increased by 35% during intravenous C-peptide (P < 0.01) but not during saline infusion (-2%, not significant). NOS blockade resulted in a more pronounced reduction in FBF during intravenous C-peptide than during saline infusion (-41 vs. -26%, P < 0.05). Intra-arterial C-peptide failed to increase FBF during NOS blockade. However, when C-peptide was given after the recovery from NOS blockade, FBF rose by 30% (P < 0.001). The vasodilator effects of acetylcholine and nitroprusside were not influenced by C-peptide. It is concluded that the stimulatory effect of C-peptide on FBF in type 1 diabetic patients is mediated via the NO system and that C-peptide increases basal endothelial NO levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucagon-Like Peptide 1 Recruits Microvasculature and Increases Glucose Use in Muscle via a Nitric Oxide–Dependent Mechanism

Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) fo...

متن کامل

Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus.

OBJECTIVES We sought to determine whether the antioxidant vitamin C improves endothelium-dependent vasodilation of forearm resistance vessels in patients with insulin-dependent diabetes mellitus. BACKGROUND Endothelium-dependent vasodilation is impaired in patients with diabetes mellitus. Oxidatively mediated degradation of endothelium-derived nitric oxide contributes to abnormal endothelium-...

متن کامل

Inhibition of Protein Kinase C Prevents Impaired Endothelium-Dependent Vasodilation Caused by Hyperglycemia in Humans

The bioavailability of nitric oxide is decreased in animal models and humans with diabetes mellitus. Hyperglycemia, in particular, attenuates endothelium-dependent vasodilation in healthy subjects. In vitro and in vivo animal studies implicate activation of protein kinase C as an important mechanism whereby hyperglycemia decreases endothelium-derived nitric oxide. Accordingly, this study tested...

متن کامل

Skin blood flow and nitric oxide during body heating in type 2 diabetes mellitus.

Individuals with type 2 diabetes mellitus (T2DM) often exhibit microvascular dysfunction that may contribute to impaired thermoregulation, but potential mechanisms remain unclear. Our goals were to quantify skin blood flow responses and nitric oxide-mediated vasodilation during body heating in individuals with T2DM compared with nondiabetic control subjects of similar age. We measured skin bloo...

متن کامل

Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition.

Proinsulin C-peptide treatment can partially prevent nerve dysfunction in type 1 diabetic rats and patients. This could be due to a direct action on nerve fibers or via vascular mechanisms as C-peptide stimulates the nitric oxide (NO) system and NO-mediated vasodilation could potentially account for any beneficial C-peptide effects. To assess this further, we examined neurovascular function in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 285 4  شماره 

صفحات  -

تاریخ انتشار 2003